Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc.

نویسندگان

  • S Kalandakanond
  • J A Coffield
چکیده

Previously we reported that SNAP-25, synaptobrevin II, and syntaxin I, the intracellular substrates of botulinum toxin originally identified in nontarget tissues, were present in a recognized mammalian target tissue, the mouse hemidiaphragm. Furthermore, we reported that SNAP-25, syntaxin I, and synaptobrevin II were cleaved by incubation of the intact hemidiaphragm in botulinum serotypes A, C, and D, respectively. The objective of the current study was to use the mouse phrenic nerve-hemidiaphragm preparation and botulinum serotype A to investigate 1) the relationship of substrate cleavage to toxin-induced paralysis, and 2) the relevance of substrate cleavage to the mechanism of toxin action. Immunoblot examination of tissues paralyzed by botulinum toxin type A (10(-8) M) revealed < or =10% loss of SNAP-25 immunoreactivity at 1 h postparalysis, and > or =75% loss at 5 h postparalysis. Triticum vulgaris lectin, an agent that competitively antagonizes toxin binding, antagonized toxin-induced paralysis as well as SNAP-25 cleavage. Methylamine hydrochloride, an agent that prevents pH-dependent translocation, also antagonized toxin-induced paralysis and SNAP-25 cleavage. Furthermore, zinc chelation antagonized toxin-induced paralysis and SNAP-25 cleavage. These results demonstrate that cleavage of SNAP-25 by botulinum serotype A fulfills the requirements of the multistep model of botulinum toxin action that includes receptor-mediated endocytosis, pH-dependent translocation, and zinc-dependent proteolysis. Furthermore, the minimal amount of SNAP-25 cleavage at 1 h postparalysis suggests that inactivation of only a small but functionally important pool of SNAP-25 is necessary for paralysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification.

The actin-ADP-ribosylating binary Clostridium botulinum C2 toxin consists of two individual proteins, the binding/translocation component C2II and the enzyme component C2I. To elicit its cytotoxic action, C2II binds to a receptor on the cell surface and mediates cell entry of C2I via receptor-mediated endocytosis. Here we report that binding of C2II to the surface of target cells requires cleav...

متن کامل

Functional studies in 3T3L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation.

Insulin stimulation of glucose transport in the major insulin-responsive tissues results predominantly from the translocation to the cell surface of a particular glucose transporter isoform, GLUT4, residing normally under basal conditions in intracellular vesicular structures. Recent studies have identified the presence of vesicle-associated membrane protein (VAMP) 2, a protein involved in vesi...

متن کامل

Characterization of a vertebrate neuromuscular junction that demonstrates selective resistance to botulinum toxin.

Botulinum toxin blocks transmitter release by proceeding through a series of four steps: binding to cell surface receptors, penetration of the cell membrane by receptor-mediated endocytosis, penetration of the endosome membrane by pH-induced translocation, and intracellular proteolysis of substrates that govern exocytosis. Each of these steps is essential for toxin action on intact cells. There...

متن کامل

Capsaicin protects neuromuscular junctions from the inhibitory effects of botulinum neurotoxin A

Within 24 hrs after injecting botulinum neurotoxin A (BoNT/A) into the hindlimb, mice lost the toe spread reflex and developed progressive muscle weakness. At the same time, the compound muscle action potential amplitude decreased. Injection of capsaicin before BoNT/A significantly reduced these affects and protected the muscle twitch tension of the Extensor digitorum longus (EDL) nerve muscle ...

متن کامل

Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons.

Recycling synaptic vesicles are already present in isolated axons of developing neurons (Matteoli et al., Zakharenko et al., 1999). This vesicle recycling is distinct from the vesicular traffic implicated in axon outgrowth. Formation of synaptic contacts coincides with a clustering of synaptic vesicles at the contact site and with a downregulation of their basal rate of exo-endocytosis (Kraszew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 296 3  شماره 

صفحات  -

تاریخ انتشار 2001